
High Speed Asynchronous Data Transfers on the Cray XT3

Ciprian Docan, Manish Parashar, Scott Klasky

{docan,parashar}@caip.rutgers.edu,klasky@ornl.gov

May 3, 2007

Abstract

High-performance computing is playing an impor-
tant role in science and engineering and is en-
abling highly accurate simulations of complex phe-
nomenon. However, as the computing systems
grow in scale and computational capability, achiev-
ing desired computational efficiency becomes in-
creasingly challenging. One of the key challenge
is getting large amounts of data off the compute
nodes at runtime, and over to service nodes or
another cluster for real-time analysis. This IO
should not impose additional synchronization re-
quirements, should have minimal impact on the
computational performance, maintain overall Qual-
ity of Service and ensure that no data is lost. Tech-
nologies such as RDMA and the Portals library al-
low fast memory access into the address space of
an application without interrupting the computa-
tional process, and provide a mechanism that can
support these IO requirements.

The objective of the DART (Decoupled Asyn-
chronous Remote Transfers) project described in
this paper is to build a thin communication layer on
top of Portals library that allows fast low-overhead
access to data at the compute elements, sup-
ports high-throughput low latency asynchronous
IO. This layer is part of a high-throughput data
streaming substrate that uses metadata rich out-
puts to support in-transit data processing and data
redistribution for coupled simulations. The paper
will describe the design, implementation and per-
formance evaluation of the communication layer,
and demonstrate how it can be used to offload ex-
pensive IO operations to dedicated service nodes
allowing more efficient utilization of compute ele-
ments. Finally, we will examine the IO performance
using this layer as part of GTC [7, 6], a Particle In

Cell code that is part of the Fusion SciDAC.

1 Introduction

Simulating complex physical phenomena in scien-
tific applications has always had high demanding
computational requirements for speed performance
and time constraints. In order to meet these re-
quirements, the simulation applications rely on op-
timized algorithms and powerful underlying hard-
ware. With their increasing computational power
and availability, parallel machines and clusters of
computers offer the perfect framework for scientific
simulations.

The DoE SciDAC CPES fusion simulation
project is a distributed application composed of
multiple modules that run on different HPC ma-
chines (Jaguar parallel machine and Ewok cluster).
Being coupled, these modules have to exchange
data back and forth between them during a run-
time cycle. In this case, a key role for an efficient
execution of the application is played by the com-
munication layer. The efficiency of the communica-
tion layer is very important as the application gen-
erates a high volume of simulated data that has to
be streamed over to the visualization module, then
post processed and streamed back to the simulation
module. As the hardware (computing element) is
very fast and well tuned for scientific computations,
and the amount of simulated data is large, chunks
of data has to be streamed periodically from all of
the computing elements.

Compared to the speed of the processors on these
elements, the IO operations are slow and periodi-
cal sending of data off the compute elements will
negatively impact the time the simulation spends
on useful computations. To alleviate the trans-
fer problem, the compute elements need to offload

1

their costly IO operations to a less expensive and
less powerful compute elements known as service
elements (or service nodes). On a parallel ma-
chine, the number of service nodes as compared to
the number of compute nodes is very small, and
so multiple compute elements will be services by
one service node. However, offloading the IO op-
erations from compute elements to the service ele-
ments has to obey certain constraints: little impact
on the compute elements, no data loss, ease of pro-
grammability.

Taking advantage of the parallel machine archi-
tecture, the Portals library (an implementation of
the RDMA protocol) allows for fast memory ac-
cess directly into the address space of a running
program. Portals library is a zero-copy, OS-bypass
and application bypass and so it is able to make a
memory to memory transfer between two programs
running on two different nodes without interrupt-
ing the computational application or the operating
system.

We describe in this paper the implementation
and the evaluation of DART (Decoupled Asyn-
chronous Remote Transfers), which is a thin com-
munication layer build on top of the portals library
that allows for offloading IO operations from com-
pute nodes to the service nodes with minimal delay
and high throughput and small overhead on the
compute nodes, thus allowing the simulation ap-
plication to make an efficient use of the expensive
hardware. DART API layer exposes communica-
tions primitives for the simulation application, that
can be build on top of it.

2 Background

The fusion simulation project is made up of multi-
ple software modules: GTC module runs on the
Jaguar machine and R2D0, M3DMPP, M3DLS,
VIZ modules run on the EWOK cluster.

2.1 Hardware

Jaguar [1] is a CRAY XT3 parallel machine with
more than 5000 dedicated compute elements and
approx 80 service elements. A compute node con-
sists of a dual-core AMD Opteron 2.6GHz with
4GB memory, running the UNICOS/lc operating
system with the catamount micro-kernel [5] and

the service nodes consists of a single-core AMD
Opteron 2.4GHz with 4GB memory, running the
Linux kernel. Compute nodes and service nodes are
interconnected by a Cray Seastar router through
HyperTransport path. The HyperTransport path
is able to deliver a 6.4Gbps transfer bandwidth.

[The compute and service node reside on the
same machine, and they are only logically distin-
guished and partitioned into these subsets. The
compute nodes are used to run batch jobs and the
service nodes are used for IO operations and system
services jobs (ssh, apache ...).]

The service nodes of the Jaguar machine are con-
nected to the EWOK cluster by a 40Gbps aggre-
gated link. EWOK is a cluster made up of 128
nodes, each having a 2 Intel Xeon 3.4GHz CPU
and 4GB memory and the nodes are interconnect
by an infiniband switch through a 1Gbps link.

2.2 Portals library

The portals library [2, 9], an implementation of
RDMA protocol is a window in the address space of
a process. It supports one-side and two-side com-
munication models and zero-copy (the data to be
sent is not copied from the user space memory to
the kernel space memory, but it is streamed directly
from the user-space buffers), OS-bypass (the oper-
ating system is not interrupted and is not involved
in the data transfer) and Application bypass (the
application is not stopped, blocked or suspended
during the data transfer, but it can continue doing
useful computations).

These features are provided with support from
the dedicated network interface card, which is able
to access directly the address space of a process,
without the help of the operating system. This
network card can be programmed and portals of-
fers access to the features of the card through its
interface.

Portals library supports transfer operations for
downloading messages from a remote node’s mem-
ory (get operation) and for uploading messages to
a remote node’s memory (put operation). The two
nodes involved in the transfer are: the initiator (the
node that starts the operation) and the target (the
node, that it operates on).

For portals library to be able to support mem-
ory to memory transfers between remote processes,
parts of the involved memory (memory buffers)

2

have to be exposed to the portals library and
the network card. Exposing memory buffers is
done through portals memory descriptors, which
are data types that contains portals internal book-
keeping informations: start memory address, the
length of the buffer, current offset. Each mem-
ory descriptor is attached to a match list entry
and each match list is associated with an entry in
the portals table. According to the portals stan-
dards, each portals implementation should provide
at least eight portals table entries. To support for
more than eight memory communication buffers,
each portals table entry points to a distinct match
list, which is a linked list that has each entry asso-
ciated with one memory descriptor. To select the
proper memory descriptor (memory buffer), when
starting a data transfer, a match key (match bits)
has to be provided by the initiator and this key will
be checked against all the entries of a match list un-
til a match is found or the list is traversed entirely.
On each memory transfer, portals library generates
events indicating the starting and completion of the
operation and each generated event is logged into
an internal event queue which is associated with a
memory descriptor.

Portals also offers access control support; on the
target node, the credentials of every memory trans-
fer operation is first checked against the rules in
the access control list and if one of the rules denies
the transfer, then the message is dropped without
notifying the initiator. Using portals, message sig-
naling can be implemented based on the portals
events that are logged into the events queue, as the
library by itself does not provide support for trans-
fer completion notification, yet care must be taken
as messages can be denied and dropped at the tar-
get side without notifying the source.

3 DART Architecture

The architecture of DART consists of three parts:
(1) on the service nodes, there is a communication
layer which sits just on top of portals and provide
communication primitives to the upper layers of
the application (ex GTC code), (2) on the compute
nodes, there is a server application that offloads the
data transfers from the associated compute nodes
and streams the data further to the Ewok cluster,
(3) on the remote cluster there is a server applica-

Figure 1: DART architecture

tion that receives the data from the service nodes
of Jaguar machine.

3.1 Service node side

To make the compute node software layer lighter,
we implemented the memory (buffer) management
and transfer logic in the service node. The server
application that runs on the service nodes can be
started on multiple service nodes and can run as a
cooperative application by splitting the compute
nodes assignment evenly between all the started
servers, thus assuring load balancing on compute
node message transfers (on our scenario, all of the
compute nodes transfer the same amount of data
and at the same time).

Since our purpose is to minimize data transfer
latency, we want that a message transfer from the
compute node to start as soon as possible, and to
be sure that there is enough memory space for each
transfer to start we have preallocated a number of
buffers equal to the number of compute nodes asso-
ciated with a server. Due to physical memory lim-
itations for our tests we’ve used a 4MB buffer unit
and allocated a total of 128 buffers. These buffers
are preallocated at the start of the program and are
cycled between three queues during the runtime of
the program, and they have the same lifetime as
the program.

The server is a multi-threaded [8] and consists
of three different threads including the main one,
which I named: ’t1’ (main thread), ’t2’ and ’t3’.
There are also three different queues which stores
the preallocated buffers, named: ’empty buffer
queue’ (ebq) this queue holds buffers that are
available for transfer, ’pending buffer queue’ (pbq)

3

Figure 2: DART data flow

this queue holds in-transit messages and ’full buffer
queue’ (fbq) this queue holds the buffers contain-
ing complete transfered messages.

Mainly each thread operates on a different queue,
yet they are using next thread’s queue to insert
a buffer into it. Thread ’t1’ operates on ebq and
inserts buffers in pbq, thread ’t2’ operates on pbq
and inserts buffers in fbq and thread ’t3’ operates
on fbq and inserts buffers back in ebq.

The server has a memory descriptor used for
compute node registration messages. The buffer
associated with this memory descriptor is large
enough to hold all the registration messages from
all the compute node (registration messages are
small messages). If on the service node side are
running multiple servers, then the master server
will forward compute node registration requests
to all the server nodes in a round-Robin fashion.
The server has another memory descriptor used for
other servers registration request messages or com-
pute node registration requests that were forwarded
by the master server.

For data transfers, the server application has a
list of three memory descriptors used for receiv-
ing data transfer request header messages. All of
these descriptors have the same access control [3]
information and reside on the same portal table
entry. When the first descriptor in the list is full
it is unlinked and the next one will receive fur-
ther incoming transfer requests. The ’t1’ thread
polls on the portal event queue associated with
these memory descriptors. When an event is ex-
tracted from the event queue, the thread tries to
get an ’empty buffer’ from the ebq and initiates
the message transfer from the corresponding com-
pute node. After initiating the transfer, it places

this buffer in the pbq and wakes up the ’t2’ thread.

The second thread (’t2’) makes a list (an array)
of event queues associated with memory descriptors
that have in-progress incoming messages and if any
of the transfers ends, it extracts the corresponding
buffer from the pbq queue and inserts it to the fbq
queue and wakes up thread ’t3’.

The third thread (’t3’) removes a buffer from the
fbq queue and streams its content over a tcp con-
nection to the ewok cluster then it inserts the buffer
back in the ebq to be reused by the first thread.

3.2 Compute node side

On the compute node side, there is one memory
descriptor used for sending the registration request
message and another memory descriptor for receiv-
ing the registration information (a unique id). For
data message transmission there are 2 memory de-
scriptors: one is used for message header transfers
and the other one is used for the actual data trans-
fer. The memory descriptor for header message is
created at the initialization of the program and is
reused upon multiple data transfers while the data
memory descriptor is created on each transfer and
after the transfer ends it is discarded (one memory
descriptor per transfer).

The message transfers are asynchronous: the ap-
plication that runs on top of our layer can make a
send call and continue its computational work with-
out waiting for the transfer to actually finish (this
will be taken care by our software layer). Since por-
tals implementation is OS-bypass and application-
bypass aware, data transfer can happed in paral-
lel with the computations, without interrupting the
application in any way. Of course the data transfer
takes some time, even though it is very small, so if
one compute node wants to make another transfer,
the next time it wants to transfer data out, if that
happens to fast and the previous transfer is not
done yet, it has to wait for the previous transfer
to finish. In addition to this, since at the service
node the server has to multiplex all the compute
node transfers, the data transfer frequency is highly
dependent on the number of compute nodes asso-
ciated with one server and the availability of the
TCP bandwidth (since this is a shared resource).

4

4 API and Usage

The API provided by DART is to be used by dedi-
cated applications developed to run on the compute
elements, that have fast communication require-
ments. The servers that run on the service nodes
does not provide any API to the user, but they act
as an extension and helper application for the com-
munication layer on the compute nodes. DART
API offers the following functions: init(), finish(),
ptl cn send(), would block().

Init function initializes the library or exits the
application and logs a message in case of any er-
ror, finish function clears the resources allocated
by the library and also flushes and waits for any
pending transfers, ptl cn send function sends asyn-
chronously a data message without waiting for its
completion and would block determines if the next
message to be send will be delayed or the transfer
will start right away.

There are a couple of steps that have to be done
prior to initializing the DART communication layer
on the compute nodes. First, the server resposible
for receiving the data on the Ewok cluster has to
be started up and second, all (the master and the
slaves) of the servers that run on the service nodes
have to be started. This exact sequence has to be
followed otherwise, the DART layer will report an
error and will exit the application.

5 Operations

5.1 Compute node bootstrap

Jaguar is a parallel machine and each node of
the machine is identified in the system through a
unique node id (nid). This node id is accessible to
the programmer through the portals library; the li-
brary also provide a unique identifier for each pro-
cess that runs on a node (pid). Together, these
two numbers nid, pid, forms a tuple that is used
for addressing a remote node when sending mes-
sages using portals library. Even though a node is
uniquely identified within the matrix of nodes, por-
tals library does not provide a node address reso-
lution for the nodes that are allocated for the same
application.

Because of the computational requirements of
the simulation, it will need multiple nodes/cores to

Figure 3: Compute elements bootstrap

run on. The node assignment for our application
is done by a batch/distribution system that will
assign dynamically the requested number of nodes
from the system available nodes. Since node assign-
ment is dynamic, so will be the node ids and the
process ids needed for address resolution. So we
needed a master node that is responsible for reg-
istering all the other nodes that are dynamically
assigned for our application, yet the master node is
also dynamically choosed.

To solve this problem, we relied on the file-system
that is shared between the compute and io/service
nodes. From the service nodes side we have to de-
cide one master node, this master node will write
its identity (identity–the tuple “nid, pid”) to a disk
file (“configuration” file), that is shared with the
compute nodes. Upon start–up the compute nodes
have to read this file to get the address of the mas-
ter node and than to register themselves with the
master.

The same idea is applied to the other servers that
runs on the service nodes. After we start-up the
master server, additional (slave) servers can start
and register themselves with the master server, by
resolving masters’s address from the configuration
file.

5.2 Communication protocol

The compute nodes are nodes specially designed to
run scientific application with heavy computations,
and it is desired to spend as little time as possible

5

Figure 4: Compute node time diagram

Figure 5: Service node time diagram

in doing IO operation (thus increasing the compu-
tational time).

Our communication software layer that runs on
the compute node is designed to be light and simple
and to assure asynchronous data transfers. There
is no buffer of transfer management done on the
compute node, but instead all of the logic is imple-
mented on the service node.

The communication happens in two steps: (1)
first a compute node sends a small “header” mes-
sage to the service node with which it is associated;
(2) a service node initiates the transfer (not neces-
sarily the same service node). After sending the
header message, the compute node does not wait
for the transfer to finish, but instead it continues
with the application computations. The next time
this compute node wants to transfer another mes-
sage, before it sends the new message it has to check
and eventually wait for the previous sent message
to be entirely transfered, before it may proceed.

On the service node side for header message
transfers I have set up a list with three memory
descriptors, each one of them having the same prop-
erties (access control informations and match bits).
When the memory buffer space of the current mem-
ory descriptor is filled, the memory descriptor is au-
tomatically discarded and future header messages
will be stored in the next memory descriptor from
the list. When I finish parsing all the events from
the event queue associated with the current dis-
carded memory descriptor, I create a new memory
descriptor and add it back to the list, to compen-
sate for the discarded one and keep the length of
the queue constant.

The memory descriptor that is filled and dis-

carded is not thrown away, but it is still accessible
by the local process, yet is is not accessible from a
remote compute node it will not accept any more
data transfers. So the information that it contains
is not dismissed and can be accessed and manipu-
lated (streamed on a tcp connection or written to
disk) later on.

5.3 Memory descriptor restrictions

A memory descriptor is a data structure accessi-
ble by the network interface card that describes a
contiguous region of the address space of a program
that is directly accessible by the network card with-
out the involvement of the OS or the application.
At the network interface card, each memory de-
scriptor is associated with a match entry (1 to 1).
The match entry is a data structure that contains
access information for the associated memory de-
scriptor (nid, pid that are allowed to use the mem-
ory descriptor and the match-bits).

Every portal transfer operation generates events
that are associated with the start, end and acknowl-
edgment of each message transfered. These events
are stored in an event queue associated with the
memory descriptor. The size of the queue is es-
tablished at the creation of the memory descriptor.
The memory buffer space of each memory descrip-
tor is managed locally by portals: it has a local
offset that keeps track where in the buffer should
it write the next message. Successive transfers to a
memory descriptor increments the local offset, and
to be able to reuse the memory descriptor, this off-
set has to be reseted to zero (it can not be decre-
mented through portals api functions, but only re-
seted).

The restriction came with the portals api reset
function: the reset can succeed only if there are
no pending events in the event queue (events that
were logged in the queue due to message trans-
fers but were not extracted from the queue in a
parsing/analyzing operation). This restriction is a
drawback in terms of efficient usage of the buffer
memory when you do multiple put (write) opera-
tions to the same memory descriptor, because it
prevents you to use that memory region as a real
circular queue.

As an example suppose we have created a mem-
ory descriptor that is able to hold 7 fixed size mes-
sages, also lets assume that at some point in time

6

due to the execution context there are 6 messages
transfered into this memory descriptor. Accord-
ingly there will be 6 events associated with these
transfers in the event queue. At this time the local
offset will point to the sevenths available location
in the memory descriptor; let’s also assume that we
got the chance to parse the first three of the trans-
fered messages, when the sevenths message arrives
the descriptor will be full and because the offset can
not be reseted it will not accept any more incoming
message transfers even though the first three spaces
in the buffer are available because we have already
parsed them.

6 Evaluation

There are a couple of parameters that influence the
data transfer rates between compute nodes and ser-
vice nodes and these are: degree of associativity
(how many compute nodes are associated with one
service node), data unit size of the transferred mes-
sage (also known as buffer size), number of avail-
able memory descriptors on the service node, the
rate of message sending (or the compute time) and
the consumption time (time to write the message to
disk on service node or time to stream the message
to ewok).

6.1 Data transfer rates

The purpose of this test was to check for the max-
imum transfer rate that we can achieve between
compute and service nodes using portals. The pa-
rameters for this test were set up as follows: a
2:1 degree of associativity, a variable message size
starting from 1MB up to 100MB, a fixed compute
time of 1 ms and a fixed number of 3 memory de-
scriptors on the service node. Since we were in-
terested in the transfer rate, using only one com-
pute node would have done the job, yet we used
both cores of a compute node as that would be the
case when running a real application. We used a
variable buffer size from 1MB up to 100MB with
a 4MB increment and for each different size of the
buffer we run the transfer 100 times. The simu-
lated compute time was fixed to 1ms; this parame-
ter does not influence the transfer rates because we
measure the transfer times and sizes on the service
node. The 3 memory descriptors used follows the

formula 3/2 ∗#computenodes; this number is empiri-
cally determined to suit the transfers while adding
a decent memory overhead on the service nodes.

The experimental results proved that we can sat-
urate the network link between compute nodes and
service nodes using a buffer of minimum 4MB in
size.

 1134

 1136

 1138

 1140

 1142

 1144

 1146

 1148

 1150

 1152

 0 10 20 30 40 50 60 70 80 90 100
tr

an
sf

er
 r

at
e

(M
B

/s
ec

)
message size (MB)

SeaStar Bandwidth Compute-Login Node

transfer bw

Figure 6: Bandwidth measurement between com-
pute and service nodes

On figure 6, the values presented on the graph,
are the average values taken over 100 samples for
each message size. The differences on the average
values are due to the fact that the service node
used was a login node and thus a shared resource.
To measure the time taken by a transfer, we used
the gettimeofday() system call and we might have
counted for some process scheduling as well.

6.2 Overhead on compute nodes

The objective of this test is to measure the overhead
of an IO operation on a compute node in terms of
time spent on the IO operation compared with the
time spent on computing.

To achieve our goal in minimizing latency, on a
service node, we have to start transferring data off
the compute nodes in parallel and as soon as it is
available.

To allow for parallel transfers, on the service
node side, we need a number of memory descrip-
tors at least equal to the number of compute nodes.
For this test, we used 128 compute nodes that were
associated with one service node. Due to the limi-
tation of the physical memory on the service node
and to the number of compute nodes associated

7

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 0 20 40 60 80 100 120 140

tim
e

(m
ic

ro
-s

ec
on

ds
)

compute node number

Compute Nodes IO Time

total io time
wait time

header time

Figure 7: Time on compute nodes

with it, we restricted the size of a memory descrip-
tor to 4MB (and thus the maximum transfer unit
was also set to 4MB).

DART layer was evaluated with a test simulation
application that did not perform any real (scien-
tific) computations, but was simulating the com-
pute time (this is the amount of time that the
simulation on the compute node spend on compu-
tations between two successive IO operations) by
busy waiting for a predefined amount of time; the
value for the compute time was exposed as a com-
mand line parameter for the test simulation.

The initial test was done with a simulated com-
pute time of 2.9s and the results can be seen in
figure 7. In this case, the tw is almost identical
with the tt and so the two graphs track each other.
The th is many order of magnitude smaller than the
other times and so in the graph it appears as being
equal to 0. By analyzing this graph, we saw that
a compute node spend most of its io time waiting
for a previous message to finish its transfer. This is
a direct result of the service node being busy with
“consuming the data”: in this case streaming it
to ewok and thus the memory descriptors being in
use. Figure 8 shows the stream time on the service
node. The values presented on the graph represent
cumulative time over 100 iterations.

Figure 9 shows the total time a message spend
on the service node (time since the message was
fetched from a compute node, up until the message
was streamed to ewok); the values on the graph
also represents cumulative values over 100 itera-
tions. Since the streaming time is small compared
to the total time, the difference is due to queu-

 3.1

 3.2

 3.3

 3.4

 3.5

 3.6

 3.7

 3.8

 0 20 40 60 80 100 120 140

tim
e

(s
ec

on
ds

)

compute node number

Service Node Stream Time

stream time

Figure 8: Stream time on the service nodes

 390

 395

 400

 405

 410

 415

 420

 425

 0 20 40 60 80 100 120 140

tim
e

(s
ec

on
ds

)

compute node number

Service Node Total Time

total time

Figure 9: Total time on the service nodes

ing and waiting for previous queued messages to
be streamed.

Based on the fact that portals library can trans-
fer data without interrupting the application, we
have increased the compute time to create a better
overlap between computations and io operations.
For the second test, tuning the compute time, the
best performance was achieved for a compute time
of 4.383s, the results are shown in figure 10.

Transfer latency and parallelism is highly af-
fected by the value of the compute time. We
have established an upper limit for this value as:
tfb ∗ #coputenodes, where tfb is the time needed to
send one message to the Ewok cluster.

As figure 10 shows, the times spent on average
in an IO operation by a compute node during the
simulation are: th = 0.01µs, tw = 0.08µs and
tt = 0.9µs, and these are cumulative times over
100 steps.

8

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 20 40 60 80 100 120 140

tim
e

(m
ic

ro
-s

ec
on

ds
)

compute node number

Compute Nodes IO Time

total io time
wait time

header time

Figure 10: Time on compute nodes

6.3 Integration with GTC

The third experiment with DART library was to
integrate and analyze its performance with a real
scientific application and we used for this test the
GTC code.

GTC code has a defined interval, that can be ad-
justed through an input parameter, when it writes
its restart files to disk. To analyze DART, we have
replaced the io routines used to write restart files
to disk by equivalent DART calls that stream the
content of the files to ewok or another service node.

GTC application was set up to run on 128 com-
pute cores for 100 simulation time steps and to pro-
duce its restart files every fourth step; each gener-
ated restart file was 8.5 MB.

As we determined in the previous experiment,
the application compute time plays a critical role
in DART io performance. At this point we did
not want to modify the application code to adjust
the compute time, but we wanted to determine the
value of the compute time in the absence of any io
operation that could introduce any delay. We mea-
sured this value by simulating the restart file writes:
the application was calling the write function, but
the function was modified to record a time-stamp
of the call and return immediately without actually
writing the data. The measured compute time was
∼4.5sec.

For the baseline test, to have a value to compare
with, we configured GTC to write its restart files to
the Lustre [4] file system directly from the compute
nodes and we measured the time the code spent on
the restart write function. The results are shown

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 500 1000 1500 2000 2500 3000 3500

tim
e(

se
c)

transfer samples, 128 nodes (25 sample/node)

GTC IO Time Using Lustre

io time

Figure 11: IO time for GTC writing to Lustre

in figure 11.

The same experiment was done, this time using
DART library. The library was set up to support
128 compute nodes associated with a service node
and so we have preallocated 192 memory descrip-
tors on the server side, each reserving 10MB mem-
ory space for data transfers. We chose another login
node as the remote end for the streaming process.

A GTC restart file is composed by multiple sin-
gle value integers, single value floats, 1 dimensional
float arrays and 2 dimensional float arrays. We
had two approaches in transferring the data out of
the compute nodes: unbuffered restart file content
transfers and buffered restart file content transfers.

In the unbuffered approach, we sent each com-
ponent of the restart file: single values and arrays
in a separate DART io transfer call. The results
did not show a good performance, and this is be-
cause individual components of the restart file were
send sequentially one ofter the other and so they
did not take advantage of the overlapping between
computations and transfers. The maximum size of
a transferred message was 7.5 MB and the maxi-
mum waiting time was registered after the transfer
of this message, while the wait time upon the first
transfer of a new restart file was very small. This
last observation leads to the idea that the transfers
could finish entirely if all pieces of a restart file are
sent at once.

The second approach was based on the observa-
tion mentioned above. The GTC and DART setup
was identical, except that this time we buffered in
the DART layer on the compute node the content
of a restart file and we have sent it as a single mes-

9

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 500 1000 1500 2000 2500 3000 3500

tim
e(

se
c)

transfer samples, 128 nodes (25 sample/node)

GTC IO Time Using Dart

io time

Figure 12: IO time for GTC writing through DART

sage. The link bandwidth between the two login
nodes is 10Gbps and so during a compute time cy-
cle (4.5s) all the restart file were streamed to the
other node. This is proved by the results shown in
figure 12 since the waiting time before a new io op-
eration is very small and moreover the results show
that in this case the DART library performed bet-
ter and transferred the data faster than writing it
to Lustre.

7 Conclusions

In this paper we have presented DART a library for
fast, asynchrounous and low latency data transfers
built on top of Portals for Cray XT3 machine.

We have described three experiments that we
have done: data transfer rates where we have tested
for the maximum transfer rate that we can achieve
using portals from compute to service nodes. Over-
head on compute nodes where we have tested to
see the impact the DART layer will have on com-
pute time on the compute nodes and finally we
have tested the performance of DART by integra-
tion with the GTC code.

The results proved that we can saturate the
SeaStar link between compute and service nodes
and we can deploy DART layer on the compute
nodes with very small overhead on the application
computation time and also DART is able to inte-
grate with GTC scientific application and enable
very fast data transfer.

The performance of DART is influenced by a
couple of factors: degree of associativity, available

memory on service nodes, the bandwidth with the
remote peer and the most important is the amount
of overlap between computations and io operations
or the compute time. The key observation is to
buffer consecutive small data messages on the com-
pute side and make one send call with a larger mes-
sage and allow enough time for previous transfers to
finish. We have estimated the upper bound for the
compute time as: stream time ∗ #computenodes.

References

[1] http://info.nccs.gov/resources/jaguar.

[2] Ron Brightwell, Trammell Hudson, Kevin Pe-
dretti, Rolf Riesen, and Keith Underwood. Im-
plementation and Performance of Portals 3.3 on
the Cray XT3. IEEE International Conference
on Cluster Computing, September 2005.

[3] Ron Brightwell, Arthur B. Maccabe, and Rolf
Riesen. Design, Implementation, and Perfor-
mance of MPI on Portals 3.0. International
Journal of High Performance Computing Ap-
plications, 17(1), Spring 2003.

[4] Inc. Cluster File Systems. Lustre: A Scal-
able, High Performance File System. http:

//lustre.org/docs/whitepaper.pdf.

[5] Cray Inc. Cray XT3tm Sytem Overview. Tech-
nical Report S-2423-13, November 2005.

[6] S. Klasky, S. Ethier, Z. Lin, K. Martins, D. Mc-
Cune, and R. Samtaney. Grid-Based Parallel
Data Streaming implemented for the Gyroki-
netic Toroidal Code. November 2003.

[7] Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang,
and R. B. White. Turbulent transport reduc-
tion by zonal flows: Massive parallel simula-
tions. Science, 281(5384):1835–1837, 1998.

[8] B. Nichols, D. Buttlar, and J. P. Farrell.
PThreads Programming: A POSIX Standard
for Better Multiprocessing. O’Reilly, Se-
bastopol, CA, 1996.

[9] Rolf Riesen, Ron Brightwell, Kevin Pedretti,
Arthur B. Maccabe, and Trammell Hudson.
The Portals 3.3 Message Passing Interface - Re-
vision 2.1. Technical Report SAND20006-0420,
April 2006.

10

