

CUG 2007 Proceedings 1 of 5

Compute Node Linux: New Frontiers in Compute
Node Operating Systems

Dave Wallace
Cray Inc

ABSTRACT: This is a discussion of Compute Node Linux performance and the work
underway to bring that performance in line with Catamount.

KEYWORDS: Light Weight Kernel, Linux

1. Introduction
The talk upon which this paper is based
was designed to discuss the performance
related work going on within Cray
Software Development. There has been a
lot of interest in the performance on
Compute Node Linux, CNL. The original
goal for CNL was to be within 10% of
Catamount performance for a set of
applications that are important to
current customers. Because of the
interest it seemed like a good idea to
give an update on the current
performance and what we are learning
about Linux as a compute node operating
system. The results presented here are
early. There is still work to be
completed, and we are learning more
about system interactions everyday.

The talk that this paper is based on
covered five areas involved in the
current performance investigations. The
areas are: metrics – what is being
measured, Jitter – What we are learning
about Jitter, Portals – probably the
key area so far in our performance
investigations, I/O – our baseline data
about I/O performance, and finally
application results – a look at some
current results relative to Catamount.

It is critical to remember that while
Cray is moving to use CNL this does not
imply that Catamount is bad or
undesirable. Catamount is the standard
in compute node operating systems. Cray
continues to sell and service
Catamount.

2. Metrics
The measures for CNL are primarily
based around application performance.
However, there are other interesting
metrics for a compute node operating
system. I/O is important and the
ability to handle I/O requests across
many compute nodes is important. I/O
measures can be taken for applications
and by using I/O benchmarks.

Another interesting metric is the time
it takes to start and stop
applications. This is often a long time
on clusters and Catamount has set the
standard for starting an application in
seconds even on multiple thousands of
nodes. There is some room for CNL to
show better performance – but mostly
when there are application failures –
as Lustre lock recovery is much faster
in Linux than Catamount.

Early analysis of differences between
Catamount and Linux showed little
variation in on node performance. The
similarities in obvious things like
hardware, compilers, and libraries
meant that much of the computation
would be the same under either
operating system. The differences would
be focused in areas of communication,
the messaging between nodes and in
operating system overhead differences
between Catamount and Linux.

3. Development Work in Progress
There are several areas of work
underway in development. Each
subproject has a set of tasks that are
in progress and have some initial
results. The first area of interest is

Jitter. Jitter is described in a number
of papers over the past few years.
Basically this is the impact of
operating system overhead on
application performance.

There are several approaches that have
been taken to control Jitter. Cray used
a synchronized scheduler on the XD1.
The approach works well when there are
many services being used on the compute
node. Since Catamount did not use this
approach and scaled well. And Catamount
“compatibility” is the initial
objective of the CNL project, the
decision was made to not use the XD1
synchronized scheduler and instead
remove all the services not absolutely
required for operation.

CUG 2007 Proceedings 2 of 5

Portals performance with Linux is
another focus of the project. This area
was known to need tuning to support
applications. Changes have been made to
focus on the Portals driver to reduce
the overhead of this driver as much as
possible. Work in the driver included
making multi-threading locking
enhancements and changing how memory is
managed within the driver. Some of this
work is complete and it appears to be
making a positive (in terms of results
– negative in the time spent in the
driver) impact.

In the area of I/O there are changes
required for both Jitter – Lustre
heartbeats that are essentially Jitter.
And there is the problem of too many
console messages which has been a
problem with the Linux clients. These
are being worked on and are fixed
respectively.

In the Programming Environment area
there are some important efforts
underway. First, “send to self” a
feature that uses Linux shared memory
as a fast transport for MPI messages
between processes on the same node. We
expect to get somewhere in the vicinity
of 0.5 microsecond for zero byte
latency for this sort of MPI messaging.
This is substantially higher than thee
mechanism available under Catamount. S

The second Programming Environment
change is the use of mixed MPI and
OpenMP models within an application.

The use of OpenMP on the node makes
sharing easier. MPI continues to be the
messaging mechanism for off node
communication.

4. Jitter
The best measure of a Jitterless
compute node operating system is
Catamount. We used the FTQ benchmark
because it has been used to measure
Jitter on a compute node by other
researchers. The following is a graph
of the output of FTQ on a Catamount
node.

What this graph shows is the regular
10Hz tick of the Catamount clock and
the 1 second interval of the Process
Control Thread, PCT, doing it’s cleanup
work. There is very little other
indication of an application losing cpu
cycles to the Catamount OS.

In contrast to this you can see a Linux
operating system that has been stripped
of most services still has plenty of
activity that interrupts an
application.

CUG 2007 Proceedings 3 of 5

The Linux clock in a 2.6.16 kernel is
still ticking at 250Hz. This causes the
thick red slab at the top of the graph.
There are a number of other interrupts
and the spikes of the time this takes
from the application vary widely, but
clearly many cycles are not available
to the application and the potential
for barriers and messages to arrive
during this time and forcing delays in
responses from the application were an
early indication of issues with Jitter.

We have been looking at each interrupt
and deciding which interrupts to delete
or modify in a compute node
environment. An early view of this work
is shown below.

This Linux 2.6.26 kernel has a 10Hz
clock and has many of the longer
interrupts removed. There is still work
to be done, but the effects of this
work can now be seen at scale in some
of the microbenchmarks.

This slide shows a clear straight line
in blue below – taking less cpu time on
the benchmark – than the default CNL
kernel. Interestingly the difference is
not apparent until between 128 and 256
nodes and become a marked difference at
1024 nodes. This is a clear indication

that the effects of scale are difficult
to discern without sufficient number of
nodes.

5. Portals

A major focus of the CNL performance
work has been in Portals. As previously
mentioned the Linux driver was not
tuned for supporting applications. This
is not as odd as it might seem. The
Linux driver is used on Service I/O
nodes to connect to disk devices which
have extremely long latencies and are
mostly reading and writing very large
blocks of data. An application node
needs to have a driver that is
extremely fast at all message sizes and
is tuned to be ready for a new message
as quickly as possible. This tuning
work is expected to help improve
Service I/O node performance as devices
and other connections are added to
those nodes.

All the new compute nodes are multi-
core. The expectation of a quad core
compute node in 2007 makes it extremely
important that the Portals driver be
threaded so that multiple requests and
interrupts can be handled
simultaneously. This work is mostly
complete and we can already see
improvements in the dual core
performance of CNL.

Memory management is very different in
Linux than Catamount. This combined
with differences in message management
have made this an important area of
change and optimization. The changes in
this area to date are probably among
the most important and most visible.

CUG 2007 Proceedings 4 of 5

Catamount tuning of latency and
bandwidth over the past several years
have not been matched by the Linux
Portals driver. The Linux driver was
about 20% slower on zero byte MPI
messages and gave away 15% of bandwidth
to Catamount. Initial work on memory
management immediately retrieved 50% of
the difference in zero byte latency.
This work continues to focus on
improving the driver performance and
comparing measures to the Catamount
driver. As with any tuning effort the

changes begin to come more slowly and
in smaller sizes as the tuning
continues. We expect to work for every
100 nanoseconds going forward.

6. I/O
Our initial look at I/O performance
shows that CNL has a very large
advantage in small, less than 1MB I/O
requests. CNL also shows rather
dramatic improvements in the directory
and metadata operations. These
improvements are likely due to caching
and the Linux Lustre client support.
There is a small advantage that
Catamount has with larger I/O requests
at the 1MB and 4MB I/O request size for
a single width file system. A file
system striped across 4 OSTs shows a
Catamount advantage only at 4MB. These
differences will bear some
investigation as the project moves
forward.

7. Application Results
We have been running applications at
scale with some of our recent changes
for a short time. We are quite
encouraged at the improvements from our
first encounters with applications at
scale.

Some simple results at a moderate scale
on GTC and MILC run in mid April show
modest differences in performance –
within the acceptable range of 10%
slower than Catamount, which is our
initial target.

Application#
Processes

%
difference
SC

%
difference
DC

GTC 512 -2 -2

- 1024 -2 -2

- 2048 - +1

MILC 512 -10 -4

- 1024 -10 -5

- 2048 - -4

Application#
Processes

%
difference
SC

%
difference
DC

LSMS
bcc_Fe_1024

1024 -4 -4

bcc_Fe_2048

2048 - -2

bcc_Fe_4096

4096 - -2

bcc_Fe_8192

8192 -1 -1

One of the applications that had shown
a 2x slowdown with CNL is POP. POP is
running much closer t
o Catamount now. We are still looking
at differences in performance, but at
less than a 15% difference we are
feeling that we have a much better
chance of improving – perhaps getting
faster than Catamount.

CUG 2007 Proceedings 5 of 5

Application #
Processes

%
difference
SC

%
difference
DC

POP
Step/Total

1000 -3 -9

Baroclinic

1000 0 -13

Barotropic

1000 -7 -2

POP
Step/Total

2000 -10 -7

Baroclinic

2000 -1 -15

Barotropic

2000 -16 -3

POP
Step/Total

4800 -1 -14

Baroclinic

4800 -4 -10

Barotropic

4800 0 -9

POP
Step/Total

8000 - -13

Baroclinic

8000 - -12

Barotropic

8000 - -13

Application #
Processes

%
difference
SC

%
difference
DC

POP
Step/Total

10000 - -14

Baroclinic

10000 - -16

Barotropic

10000 - -14

The application LSMS is a often used
code on XT systems. This code shows
very little loss of performance on CNL.

The S3D application was chosen because
it has some I/O requirements. This
application shows some improvements but
a complete understanding of the
performance of this application is not
complete.

Application # Processes %
difference
SC

%
difference
DC

S3D 1024 0 +6

- 2048 +13 -4

- 4096 -2 +11

- 8192 - X

About the Author(s)
Dave Wallace is Technical Project
Leader of XT. He can be reached at
dbw@cray.com. Dave sometimes makes the
mistake of letting Jim Harrell work on
his talks. Jim Harrell is Director of
the Software Architecture Group. He can
be reached at ejh@cray.com.

